这项研究讨论了半监督学习的影响与验证的语言模型,以生成数据到文本。当还补充大规模语言模型时,尚不清楚半监督学习是否仍然有用。这项研究的目的是通过将仅补充语言模型的数据到文本系统与两个数据到文本系统进行比较,这些系统通过数据增强或伪标记的半固定学习方法而富含数据。结果表明,半监督学习会导致多样性指标的得分更高。在输出质量方面,使用伪标记方法扩展数据到文本系统的训练集确实提高了文本质量分数,但是数据增强方法在没有训练设置扩展的情况下得出了与系统相似的分数。这些结果表明,即使也存在语言模型,半监督的学习方法也可以增强产出质量和多样性。
translated by 谷歌翻译
Efficient surrogate modelling is a key requirement for uncertainty quantification in data-driven scenarios. In this work, a novel approach of using Sparse Random Features for surrogate modelling in combination with self-supervised dimensionality reduction is described. The method is compared to other methods on synthetic and real data obtained from crashworthiness analyses. The results show a superiority of the here described approach over state of the art surrogate modelling techniques, Polynomial Chaos Expansions and Neural Networks.
translated by 谷歌翻译
This case study investigates the extent to which a language model (GPT-2) is able to capture native speakers' intuitions about implicit causality in a sentence completion task. We first reproduce earlier results (showing lower surprisal values for pronouns that are congruent with either the subject or object, depending on which one corresponds to the implicit causality bias of the verb), and then examine the effects of gender and verb frequency on model performance. Our second study examines the reasoning ability of GPT-2: is the model able to produce more sensible motivations for why the subject VERBed the object if the verbs have stronger causality biases? We also developed a methodology to avoid human raters being biased by obscenities and disfluencies generated by the model.
translated by 谷歌翻译
Mitotic activity is a crucial proliferation biomarker for the diagnosis and prognosis of different types of cancers. Nevertheless, mitosis counting is a cumbersome process for pathologists, prone to low reproducibility, due to the large size of augmented biopsy slides, the low density of mitotic cells, and pattern heterogeneity. To improve reproducibility, deep learning methods have been proposed in the last years using convolutional neural networks. However, these methods have been hindered by the process of data labelling, which usually solely consist of the mitosis centroids. Therefore, current literature proposes complex algorithms with multiple stages to refine the labels at pixel level, and to reduce the number of false positives. In this work, we propose to avoid complex scenarios, and we perform the localization task in a weakly supervised manner, using only image-level labels on patches. The results obtained on the publicly available TUPAC16 dataset are competitive with state-of-the-art methods, using only one training phase. Our method achieves an F1-score of 0.729 and challenges the efficiency of previous methods, which required multiple stages and strong mitosis location information.
translated by 谷歌翻译
Studying animal movements is essential for effective wildlife conservation and conflict mitigation. For aerial movements, operational weather radars have become an indispensable data source in this respect. However, partial measurements, incomplete spatial coverage, and poor understanding of animal behaviours make it difficult to reconstruct complete spatio-temporal movement patterns from available radar data. We tackle this inverse problem by learning a mapping from high-dimensional radar measurements to low-dimensional latent representations using a convolutional encoder. Under the assumption that the latent system dynamics are well approximated by a locally linear Gaussian transition model, we perform efficient posterior estimation using the classical Kalman smoother. A convolutional decoder maps the inferred latent system states back to the physical space in which the known radar observation model can be applied, enabling fully unsupervised training. To encourage physical consistency, we additionally introduce a physics-informed loss term that leverages known mass conservation constraints. Our experiments on synthetic radar data show promising results in terms of reconstruction quality and data-efficiency.
translated by 谷歌翻译
最近,Rissanen等人(2022年)提出了一种基于热量耗散或模糊的生成建模的新型扩散过程,作为各向同性高斯扩散的替代方法。在这里,我们表明,可以通过与非各向异性噪声的高斯扩散过程来等效地定义模糊。在建立这一联系时,我们弥合了反热量耗散和降解扩散之间的缝隙,并阐明了由于这种建模选择而导致的感应偏置。最后,我们提出了一类普遍的扩散模型,该模型既可以提供标准的高斯denoisis扩散和逆热散热,我们称之为模糊的扩散模型。
translated by 谷歌翻译
在过去的几年中,自动睡眠评分的研究主要集中在开发日益复杂的深度学习体系结构上。但是,最近,这些方法仅实现了边际改进,通常以需要更多数据和更昂贵的培训程序为代价。尽管所有这些努力及其令人满意的表现,但在临床背景下,自动睡眠期临时解决方案并未被广泛采用。我们认为,由于很难训练,部署和繁殖,大多数对睡眠评分的深度学习解决方案在现实世界中的适用性受到限制。此外,这些解决方案缺乏可解释性和透明度,这通常是提高采用率的关键。在这项工作中,我们使用经典的机器学习来重新审视睡眠阶段分类的问题。结果表明,通过传统的机器学习管道可以实现最新的性能,该管道包括预处理,功能提取和简单的机器学习模型。特别是,我们分析了线性模型和非线性(梯度提升)模型的性能。我们的方法超过了两个公共数据集上的最新方法(使用相同的数据):Sleep--EDF SC-20(MF1 0.810)和Sleep-eDF ST(MF1 0.795),同时在Sleep-eDF上取得了竞争成果SC-78(MF1 0.775)和质量SS3(MF1 0.817)。我们表明,对于睡眠阶段评分任务,工程特征向量的表现力与深度学习模型的内部学表现相当。该观察结果为临床采用打开了大门,因为代表性功能向量允许利用传统机器学习模型的可解释性和成功记录。
translated by 谷歌翻译
视觉分析可以说是熟悉数据的最重要步骤。时间序列尤其如此,因为此数据类型很难描述,并且在使用例如摘要统计信息时无法完全理解。要实现有效的时间序列可视化,必须满足四个要求;工具应为(1)交互式,(2)可扩展到数百万个数据点,(3)在常规数据科学环境中可集成,以及(4)高度可配置。我们观察到,开源Python可视化工具包在大多数视觉分析任务中赋予了数据科学家的能力,但是缺乏可扩展性和交互性的组合来实现有效的时间序列可视化。为了促进这些要求,我们创建了Plotly-Resampler,这是一个开源Python库。 Plotly-resampler是Plotly的Python绑定的附加组件,通过汇总基础数据,根据当前的图形视图来增强线图可伸缩性。绘制构建的绘制是活跃的,因为工具的反应性在定性上影响分析师在视觉探索和分析数据的方式。基准任务强调了我们的工具包在样本数和时间序列方面如何比替代方案更好。此外,Plotly-Resmpler的灵活数据聚合功能为研究新型聚合技术铺平了道路。 Plotly-Resampler的集成性以及其可配置性,便利性和高可扩展性,可以有效地分析您日常的Python环境中的高频数据。
translated by 谷歌翻译
这项工作引入了3D分子生成的扩散模型,该模型与欧几里得转化一样。我们的e(3)e象扩散模型(EDM)学会了通过均衡网络的扩散过程,该网络共同在连续(原子坐标)和分类特征(原子类型)上共同运行。此外,我们提供了一种概率分析,该分析使用我们的模型接受了分子的可能性计算。在实验上,所提出的方法显着优于先前关于生成样品质量和训练时效率的3D分子生成方法。
translated by 谷歌翻译
时间序列加工和特征提取是传统机器学习管道中的关键和时间密集步骤。现有软件包的实际适用性受到限制,因为它们无法应对不规则采样和异步数据。因此,我们呈现$ \ texttt {tsflex} $,用于处理和特征提取的域无关,灵活和序列的第一个Python工具包,其能够处理具有未对准测量的不规则采样的序列。此工具包是首先序列,因为(1)基于序列的参数,用于STRIVELD-WONETS功能提取,并且(2)通过所有支持的操作维护序列索引。 $ \ texttt {tsflex} $ fasel fasel fasel,因为它本地支持(1)多变量时间序列,(2)多个窗口级别配置,(3)与其他包的处理和功能功能集成,而(4)没有假设关于数据采样率规律性和同步。来自此包的其他功能是多处理,深入执行时间记录,支持基于分类和时间的数据,块序列和嵌入式序列化。 $ \ TextTT {TSFlex} $是开发的,以实现快速和内存高效的时间序列处理和特征提取。结果表明,$ \ texttt {tsflex} $比类似的包更灵活,同时在运行时和内存使用情况下表现出这些工具包。
translated by 谷歌翻译